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Note 

Convergence Properties of the Finite- Element Method 
for Bknard Convection in an infinite Layer 

In any numerical approximation to a continuum problem, it is important to 
establish convergence to the exact solution as the number of discrete points used in 
the approximation is increased. In finite-element or finite-difference approximations, 
for example, this involves ensuring that grid-converged solutions are obtained as 
the mesh size h is decreased. For sufficiently small h, the error will vary as h to a 
certain power, which is the order of convergence. There is a considerable benefit in 
knowing the order of convergence of a particular method since it allows the 
extrapolation, to zero mesh size, of results obtained at small enough h. This 
approach has been used, for example, by Churchill et al. [ 1 ] and by Ozoe et al. 

PI. 
The purpose of the present note is to investigate the convergence of the linite- 

element approximation, for the prediction of the critical Rayleigh number and cell 
size for the onset of Benard convection in an infinite, horizontal layer. 

In order to discuss convergence one must have a measure of the error in the 
approximate solution. Fcr the finite-element method this is usually taken to be the 
mean square error in the first derivatives of the velocity and temperature, and the 
mean square error in the pressure. The rate of convergence achieved depends on the 
element used (the higher the degree of polynomial interpolation, the faster the rate 
of convergence). For example, the present study uses a nine-noded quadrilateral 
element, with biquadratic variation of the velocity and temperature, and linear dis- 
continuous variation of the pressure; for this element the above errors converge as 
the square of the length of the longest element edge in the mesh. 

If the solution to a problem has a simple bifurcation point then it can be shown 
[3] that the finite-element discretization also has one. Further, the rate of con- 
vergence of the critical parameter is the square of that for the fields: we shall say 
that the convergence of the critical parameter is superconvergent. For the element 
used here, this means that the error in the critical Rayleigh number converges as 
the fourth power of the mesh spacing h. On the other hand, for an element with 
bilinear interpolation for the velocity and temperature it converges only as h*. It is 
clearly desirable to use higher-order interpolation in order to exploit this supercon- 
vergence at a simple bifurcation point. It should be noted that theoretical results on 
superconvergence for more complex singularities have not yet been proven. 

To demonstrate the convergence of the finite-element method it is necessary to 
choose a problem with a known analytical solution, and the problem of Btnard 
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convection in an infinite horizontal layer is an obvious choice. However, a precise 
computation of the critical Rayleigh number is not straightforward, and previous 
work has involved various assumptions. For example, Ozoe et al. [2] compute the 
Nusselt number at several values of the Rayleigh number just above critical, and 
extrapolate back to obtain the critical value for the onset of convection. However, 
with this technique they obtain a value of the critical Rayleigh number which agrees 
with the exact result to only two significant figures, even when extrapolated to zero 
mesh size. 

For Benard convection in a finite layer, Cliffe and Winters [4] computed the 
critical Rayleigh number using an algorithm which locates symmetry-breaking 
bifurcation points exactly (for a given grid). For an infinite layer, this approach can 
not be used since the cell width is not known a priori. We propose, therefore, a 
novel method which uses an algorithm for locating a higher-order singularity, 
namely the coalescence of two symmetry-breaking bifurcation points [S]. This 
allows us to predict both the critical Rayleigh number and the width of the cell. The 
convergence properties for the prediction of a coalescence point are not known, but 
might be expected to be superconvergent. This particular method has the added 
advantage of exploiting the symmetry of the problem so that the calculation is 
carried out over a quarter of the full domain. This makes it more certain that the 
asymptotic region of small mesh size, for which the fourth-power law is expected, 
will be achieved for a given cost. 

To see why the critical Rayleigh number is a coalescence point we consider the 
problem shown in Fig. 1. For a given assumed value of the cell width, there will be 
a corresponding critical value of the Rayleigh number. As the cell width varies then 
the critical point will trace out a path, the neutral stability curve which is familiar 
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FIG. 1. The geometry and boundary conditions for one cell in the infinite Btnard problem. 
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from linear stability theory. This is shown in Fig. 2a. The minimum of this path 
gives the critical Rayleigh number and cell width for the onset of convection in an 
infinite layer. Now, if we consider the variation of the solution with cell width, for 
fixed Rayleigh number, then section A-B through Fig. 2a shows that this has the 
form of two pitchfork bifurcations, sketched in Fig. 2b. Clearly, as the Rayleigh 
number decreases these move closer together, and finally coalesce at the minimum 
of the neutral stability curve. 

The algorithm for locating the coalescence point of two symmetry-breaking bifur- 
cation points has been discussed in [S, 6). The basic principle is to take the set of 
equations chosen to model the problem, and to add further equations which 
represent conditions satisfied at the point of coalescence. These additional equations 
typically involve first- and second-order derivatives of the original equations with 
respect to the parameters and the variables. This extended system of equations is ’ 
solved by Newton’s method, which converges to the point of coalescence for a suf- 
ficiently good initial guess. 

We have applied the coalescence algorithm to the infinite Benard problem with 
both free and rigid horizontal surfaces. In the case of free horizontal surfaces the 
analytical value of the critical Rayleigh number is 27rc4/4 and the cell width is a. 
The Navier-Stokes and energy equations were solved in the Boussinesq 
approximation [4], extended in the manner described in [S]. The equations are 
scaled so that the cell-width appears as an explicit parameter. The initial guess for 
the solution was taken to be the trivial, conducting solution at values of the 
Rayleigh number and cell-width close to the known critical point. The Newton 
iterations were found to converge rapidly, typically after three or four iterations. All 
calculations were carried out over a symmetric section of the cell, which is one 
quarter of the full domain. This section was discretized with a grid of N nine-noded 
quadrilateral elements in the horizontal and vertical directions, which we denote an 
Nx N grid. The CPU times per iteration were 0.1, 0.4, 2.0, and 11.6 s for 2 x 2, 
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FIG. 2. (a) Neutral stability curve showing the variation of the critical Rayleigh number with 
wavenumber z/L, where L is the cell-width. (b) Section A-B through (a) showing the solution as a 
function of the wavenumber. 
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TABLE 1 

Critical Rayleigh Number for Free Horizontal Surfaces 

Grid 

2x2 
4x4 
8x8 

16x16 
Extrap 

Exact 657.51136446 1.4142135624 

Rayleigh 
number 

657.41318836 
657.54081120 
657.51385394 
657.51153060 
657.51137571 

Cell-width 

1.4154766916 
1.4142358838 
1.4142139219 
1.4142135680 

4 x 4, 8 x 8, and 16 x 16 grids respectively, on a Cray-IS. Note that the finest 
16 x 16 grid is equivalent to 32 x 32 elements (or 65 x 65 nodes) over the full 
domain of the cell. 

Table I shows the predicted values of our finite-element calculation for suc- 
cessively finer grids, in the case of free horizontal surfaces. The result of 
extrapolation of the values for the two finest grids, according to an h4 law, is also 
given. The extrapolated value of the critical Rayleigh number is seen to agree with 

1 

FIG. 3. The absolute error in (0 ) the predicted critical Rayleigh number and ( x ) the predicted cell- 
width L( x 100) as a function of N, the number of elements in the vertical or horizontal directions. The 
dashed line shows an N-“ variation. 
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the exact, analytical result to seven significant figures. It is interesting that the 
predicted values of the cell-width convergence even more rapidly, and the result for 
the finest grid is correct to eight significant figures, without extrapolation. Fig. 3 
shows the log of the error plotted against the log of iV, and this confirms the h4 
dependence. The error in the predicted cell width is also plotted and this is found to 
converge at a rate close to h6. Further theoretical work is needed to clarify this 
enhanced superconvergence of the critical cell width. 

Table II shows the predicted values for rigid surfaces. As before, the extrapolated 
value of the critical Rayleigh number agrees with the exact result to seven 
significant figures. 

The superconvergence of the critical Rayleigh number for the computation of the 
coalescence point is consistent with the theoretical work on simple bifurcation 
points [3]. One way of interpreting this is to compare it to the Rayleigh-Ritz 
method of estimating eigenvalues, in which the error in the eigenvalues is the square 
of the error in the eigenvector. 

The convergence properties of the finite-element method depend on the element 
used and also on the smoothness of the solution to the problem. For example, 
sharp corners in the solution domain can reduce the rate of convergence because 
the solution may not be sufficiently smooth for the optimal rate to apply. However, 
the effect of sharp corners is localized and it is possible that some form of mesh 
refinement, together with the use of a measure of the error which is weighted so as 
to reduce the effect of the corner, may result in the optimal convergence rate being 
recovered. This is an important area for further theoretical research. 

In summary, we have proposed a new method for predicting the critical Rayleigh 
number and cell-width for Benard convection in an infinite horizontal layer. We 
have used this to demonstrate the superconvergence of the finite-element method 
for the prediction of a point of coalescence of two symmetry-breaking bifurcations. 
Extrapolation of our predictions gives a value of the critical Rayleigh number which 
is exact to seven significant figures. 

TABLE II 

Critical Rayleigh Number for Rigid Horizontal Surfaces 

Grid 
Rayleigh 
number Cell-width 

2x2 1715.3843320 1.0094390241 
4x4 1708.3822333 1.0081118707 
8x8 1707.8034196 1.0081072657 

16x 16 1707.7644279 1.0081085142 
Extrap 1707.7618285 

Exact 1707.762 1.008 
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